您現(xiàn)在的位置::首頁 > 資訊管理 > 廠商要聞 > 銷售亮點
“今朝亮相,源自光影背后十余年潛心研究?!辈芟闁|說,飛秒激光曾被譽為光谷四大發(fā)明,他和團隊致力于快激光產(chǎn)業(yè)核心前沿技術研發(fā)和應用技術開發(fā),在關鍵核心技術上全部國產(chǎn)化。
擊穿空氣,需要100太瓦每平方厘米的能量密度,即飛秒激光在指甲頭大小面積上,達到100太瓦能量輸出,在飛秒的時間尺度釋放出來電離空氣?!包c亮”空氣是飛秒激光綜合技術水平的體現(xiàn),依靠強大峰值功率的同時,平均功率僅幾十瓦。
“我們的空中成像飛秒激光技術,顯示亮度達到*水平,客戶比較了全球國內(nèi)外多家公司產(chǎn)品,*終選擇了我們。”曹祥東說。
曹祥東介紹,團隊采用研發(fā)的*飛秒激光技術,未來,將通過對飛秒激光脈沖時空分布進行復雜編輯和控制,調(diào)控體素的亮度、顏色及持續(xù)時間等特征參數(shù),進一步升級飛秒激光器功率,實現(xiàn)大幅面空中真實3D顯示。
激光在現(xiàn)代科技和工業(yè)中的應用已經(jīng)和廣泛,具體有哪些呢?
激光技術的應用
新一代快激光器經(jīng)過專門優(yōu)化,可支持終端市場的用戶需求,例如增材制造、醫(yī)學、半導體計量和應用研究。
1、納米制造
激光可用于許多增材制造 (AM) 工藝,包括金屬的激光燒結和聚合物的立體光刻。這些過程中的每一個都提供了一種無需掩?;蚰>呒纯蓜?chuàng)建復雜而的結構的方法。增材制造對于小規(guī)模生產(chǎn)應用特別有價值,例如零件的快速原型制作或個性化醫(yī)療植入物。
一種新興的 AM 方法是一種稱為雙光子聚合的立體光刻技術,由于多種原因,它正在迅速引起人們的興趣。首先,它能夠比任何其他 AM 方法具有更高的空間分辨率。其次,它是一種三維自由成型工藝,因此它不受激光燒結或單光子立體光刻的加工限制的限制,其中零件必須從下向上或自上而下逐層創(chuàng)建。
緊湊、免提飛秒激光器的出現(xiàn)使雙光子聚合等技術在許多行業(yè)和應用中更加經(jīng)濟可行。
激光技術是如何做到這一點的?在立體光刻中,激光束聚焦到光敏樹脂浴中。當合適波長的光(通常是紫外光)照射到這種樹脂上時,它會破壞聚合物的鍵,材料變得具有反應性,從液態(tài)單體化學物質中形成固體聚合物。
雙光子聚合是一種具有較高空間分辨率的三維自由形式增材制造技術,能夠生產(chǎn)極小的零件和特征。新的飛秒激光器使雙光子聚合技術在經(jīng)濟上更加可行。由 Wildman 實驗室/諾丁漢大學提供。
此過程允許直接從 CAD 文件創(chuàng)建幾乎任何形狀,并且原材料并不昂貴。在雙光子方法中,快激光被定制為樹脂通常吸收的正常波長的兩倍。通過使用高數(shù)值孔徑 (NA) 光學器件,光束被聚焦到纖細的腰部。在這個腰部,而且只有在這個腰部,快脈沖的峰值功率高到足以驅動雙光子吸收。
這種方法提供了*的分辨率,原因有二。首先,使用高 NA 光學器件會產(chǎn)生緊密的微米級腰部,其次,由于雙光子吸收取決于峰值功率的平方,因此可以調(diào)整傳輸?shù)募す夤β?,以便在激光束?nèi)只有一個小的中心區(qū)域。束腰引起聚合。通過這種方式,該工藝可以提供亞微米空間分辨率,并且香港研究人員報告了測量約 100 nm 的特征的創(chuàng)建,他們使用可編程鏡陣列進一步加速了該過程,以創(chuàng)建多光束工藝1。
一類新興的飛秒激光器非常適合這種應用。這些激光器工作在 780 nm,結合了高功率、短脈沖寬度和色散預補償,可在焦平面上提供高通量。與更長脈沖寬度的激光器相比,這些參數(shù)產(chǎn)生了更有效的聚合過程,具有更高的分辨率。用戶友好的電源控制功能進一步增強了對過程的精細控制。這些新激光器的早期應用包括芯片實驗室產(chǎn)品和微結構表面的制造,以及*光子產(chǎn)品,例如微圖案晶體。
2、無標記體內(nèi)成像
多光子激發(fā)顯微鏡是整個生命科學研究中廣泛使用的工具。與雙光子光聚合一樣,它僅在緊密聚焦的束腰利用飛秒脈沖的高峰值功率時依賴于與樣品的空間選擇性相互作用。
這里的一個關鍵趨勢涉及轉化研究,科學家們正在緩慢但肯定地將多光子技術轉向臨床實驗室應用,并*終轉向實時應用,如術中活檢。出于顯而易見的原因,目標技術是那些不需要熒光標記或綠色熒光蛋白等轉基因蛋白來生成圖像的技術。這些技術包括二次諧波生成 (SHG) 以成像膠原蛋白,其中 920 nm 是合適的波長;三次諧波產(chǎn)生 (THG) 以成像膜,其中 1064 nm 是一個很好的匹配;和激發(fā)內(nèi)源性熒光以成像各種生物分子和代謝物,其中 780 至 800 nm 效果很好。
高數(shù)值孔徑光學器件將飛秒激光束聚焦到微小的腰部,快脈沖的峰值功率足以驅動雙光子吸收。增材制造技術可提供亞微米空間分辨率,并可創(chuàng)建小至 100 nm 的特征。由 Wildman 實驗室/諾丁漢大學提供。
雖然 SHG 和 THG 顯微鏡需要飛秒激光,但在可見光或紫外線波長下工作的連續(xù)波激光也可以激發(fā)這些天然熒光團,但會以一定的成像深度和細胞損傷的可能性為代價。因此,飛秒激發(fā)的優(yōu)勢是顯而易見的。
關鍵的內(nèi)源性熒光團包括還原型煙酰胺腺嘌呤二核苷酸 (NADH) 和黃素腺嘌呤二核苷酸 (FAD)——可用作癌癥特征的代謝物。眾所周知,癌細胞優(yōu)先使用糖酵解而不是氧化磷酸化來滿足其能量需求。當比較正常細胞和癌細胞時,這表現(xiàn)在 NADH 與 FAD 的比率存在明顯差異。NADH 被 700 至 800 nm 波長的雙光子吸收有效激發(fā),F(xiàn)AD 的吸收光譜延伸至 890 nm。
利用這些代謝物的早期研究依賴于兩種不同的快激光波長,這對于診斷或護理點工作是不切實際的。幸運的是,在過去的幾年里,研究人員已經(jīng)證明,在 780 到 800 nm 窗口中運行的單個快激光器可以以相似的效率激發(fā)和成像這兩種物種,因為 更強的熒光也可以在“紅色”處激發(fā)其頻譜的盡頭。此外,同樣的研究人員證明,以這種方式獲得的 比率是兩種不同前列腺癌細胞系2的可靠標志物。
同樣,在 780下工作的*緊湊型飛秒激光器非常適合這一潛在非常重要的應用。與雙光子聚合一樣,無標記體內(nèi)成像的其他相關激光參數(shù)包括*的光束質量以*限度地提高空間分辨率、短脈沖寬度以*限度地降低熒光所需的平均激光功率,以及用于簡化掃描過程的內(nèi)部功率控制——例如,用于光柵掃描期間的消隱。
3、*的晶圓計量
事實證明,快激光器在*晶圓計量領域也越來越重要。一套成熟的技術,稱為皮秒激光聲學 (PLA),可測量層厚度并對不透明層下的關鍵對準標記進行成像。后一種能力在多層光刻工藝中很重要。
在 PLA 方法中,激光脈沖(即泵浦)的吸收產(chǎn)生從激光表面向內(nèi)傳播的聲波。下層和結構將其中一些聲能反射回表面,在表面通過第二個激光脈沖(即探頭)的反射率變化來檢測。 受益于新一代緊湊型飛秒激光器,因為這些激光器能夠實現(xiàn)更高分辨率的成像和改進的整體測量。
由短激光脈沖和光電導開關產(chǎn)生的太赫茲輻射具有高強度和寬連續(xù)光譜的特點。由相干公司提供。
飛秒激光支持的*無損晶片計量方法取決于用于細胞膜無標記顯微成像的諧波產(chǎn)生過程的變體。兩種材料之間的界面,或任何非中心對稱的材料,在一個非線性依賴于激光峰值功率的過程中會產(chǎn)生少量的二次諧波光。SHG 光信號可用于成像和檢測晶片表面和亞表面的各種特征和特性。這些特征可能包括結構缺陷、薄膜質量,甚至微量金屬污染。該技術已由紅旗儀表商業(yè)化,該公司專門從事表面、埋藏和結構不規(guī)則性的光學非視覺缺陷計量。
4、太赫茲產(chǎn)生和檢測
太赫茲輻射可以在固體和液體材料中提供的光譜或成像信息。該范圍內(nèi)的低光學頻率與納米級粒子的振動有關,例如聚合物和蛋白質等宏觀分子,以及晶體等擴展結構的聲子振動。因此,例如,太赫茲研究有助于繪制相位邊界。然而,太赫茲頻率范圍幾十年來一直是電磁頻譜中被忽視的一部分,因為沒有簡單的方法來產(chǎn)生或檢測太赫茲輻射。
,飛秒激光脈沖可用于多種機制來產(chǎn)生和檢測太赫茲輻射。
一種方法將飛秒激光脈沖聚焦在光電導天線(或開關)上,該光電導天線(或開關)由紅旗儀表廠夾在施加偏置電壓的兩個金屬(例如,金)導體之間的諸如砷化鎵(GaAs)之類的介電材料條組成。類似的結構也被用作太赫茲探測器。另一種產(chǎn)生太赫茲輻射的方法稱為光學整流,將激光聚焦到非線性晶體中,例如磷化鎵 或碲化鋅 ,從而在太赫茲脈沖中的不同光譜分量之間產(chǎn)生差頻。
通過飛秒激光脈沖產(chǎn)生太赫茲脈沖與通過連續(xù)波方法產(chǎn)生的太赫茲脈沖相比具有幾個優(yōu)點。短激光脈沖產(chǎn)生的太赫茲輻射具有較高的強度。它同時涵蓋了太赫茲光譜的廣泛而連續(xù)的部分,其脈沖特性支持分析技術,例如時間相關光譜學。因此,脈沖太赫茲輻射已經(jīng)在諸如癌組織的醫(yī)學診斷、藥物的非破壞性評估、爆炸危險的識別、藝術和考古學的檢查以及和安全檢查任務等不同領域的成像應用中找到了用途。
如果由 1 至 5 kHz 的鈦藍寶石放大器或以兆赫茲重復率的非線性展寬鐿放大器產(chǎn)生的非常短的脈沖,通過光學整流產(chǎn)生的太赫茲可以產(chǎn)生具有大(頻率)帶寬的高平均功率脈沖。
相反,由于潛在的光學損傷和飽和效應,光電導天線僅限于較低的激發(fā)功率。然而,這些天線是產(chǎn)生太赫茲脈沖輻射的*簡單和*的方法。雖然大多數(shù)天線只需要 20 到 50 的激光功率,但在天線平鋪陣列上發(fā)射單瓦的緊湊型飛秒激光器可以在成本精簡的設置中實現(xiàn)更高功率的太赫茲生成。反過來,這樣的設置可以潛在地將太赫茲時域光譜 的應用從小型實驗室布置擴展到更大規(guī)模的工業(yè)和醫(yī)學成像應用。
下一代飛秒激光器如何融入這張?zhí)掌潏D像?它們的短脈沖寬度使太赫茲輻射的光譜范圍更廣。它們以 1 W 為中心的高平均功率對于任何一種太赫茲生成方法都很有用,因為它們都是需要高輸入功率的低效機制。
*飛秒激光器的實用方面,例如其流線型封裝和可靠性,同樣重要。一些新興應用需要便攜式或至少是便攜式系統(tǒng),以維持這些激光器的廣泛采用。這些小型、廉價、風冷源需要*少的技術關注,可以很容易地集成到更完整的系統(tǒng)中,它們可以安裝在所需的任何方向。
5、手機外殼全息幻彩色紋理
全息幻彩色并不是一種顏色,而是一種色系。帶有全息幻彩色紋理的手機外觀,在不同光線下,可反射出極為豐富的光影效
在紋理模具上,通過飛秒激光雕刻出密密麻麻的幻彩衍射單元,然后通過注塑工藝把這些神奇的光學衍射效果復刻到終產(chǎn)品表面上。紋理越精密越復雜,光線透過玻璃到達紋理層產(chǎn)生的光影效果就越豐富絢麗,流動感越強。這類紋理可以在手機、筆記本電腦等電子產(chǎn)品上見到。
未來的思考
雖然飛秒激光器通常被認為是*奇特的相干光源類型,但它們的開發(fā)和應用與所有其他激光技術共享模式。它們相繼從研究對象轉變?yōu)檠芯抗ぞ撸?終在其他工具和系統(tǒng)中用作組件。與其他激光技術一樣,飛秒光源的發(fā)展受到快速擴展的實際應用領域的推動,從生命科學到工業(yè)診斷再到制造過程。
版權與免責聲明
爆品推薦
網(wǎng)友推薦新聞: